Editorial: Microbial Role in the Carbon Cycle in Tropical Inland Aquatic Ecosystems

نویسندگان

  • André M. Amado
  • Fábio Roland
چکیده

Microorganisms have been recognized as central to nutrient mineralization and recycling in aquatic ecosystems since Lindeman's groundbreaking work on the trophic-dynamic aspect of ecology (Lindeman, 1942). Since the seventies, the development of new analytical technologies led to important conceptual perspectives, such as the microbial loop and the microbial food web (as summarized elsewhere, e.g., Cotner and Biddanda, 2002; Weisse, 2004), which have been important to understanding connections between microbially-mediated allochthonous and autochthonous organic matter decomposition and carbon dioxide (CO 2) concentrations and fluxes to the atmosphere (e.g., Cole et al., 2007; Berggren et al., 2012; Fonte et al., 2013). Currently, one of the main foci of microbial ecologists is to open the " microbial playbill " so that we can better understand who is doing " what " and " when " in ecosystem " plays " (Logue et al., 2015). It is well-documented how seasonal variation of temperature, light incidence, and precipitation affects microbial metabolism (e.g., Simon and Rosenstock, 1992; Berggren et al., 2010) in high latitude ecosystems. Considering that temperature and light incidence are less variable and remain high year-round in the tropics (Lewis, 1996), one could expect differences in metabolic processes among the latitudinal regions (Farjalla et al., 2009) and consequent effects on microbial respiration and carbon emissions (essentially CO 2 and methane) to the atmosphere. On the one hand, more intense metabolic processes are expected in lower latitudes. On the other hand, regional (e.g., flood pulse) or local (e.g., landscape characteristics) environmental conditions could be more relevant regulators of microbial metabolism than global factors (e.g., temperature, etc.). For instance, small rather than large planktonic organisms predominate at the base of microbial food webs of tropical aquatic ecosystems (i.e., pico-vs. nano-plankton) in comparison to temperate lakes, which typically means a higher flow of carbon through the microbes in the tropics than in temperate regions (Roland et al., 2010; Sarmento, 2012). Yet, certainly several new microbial ecology fundamentals will arise from asking questions that remain poorly understood, such as: (1) Does the current knowledge derived mostly from temperate ecosystems hold for tropical ecosystems? and (2) Can tropical ecosystems be good models to predict the changes in microbial metabolism and carbon cycling in temperate aquatic systems in light of climate warming scenarios? The aim of this research topic—Microbial role in the carbon cycle in tropical inland aquatic ecosystems—was to provide a selection of studies that look at the wide …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How energy and water availability constrain vegetation water-use along the North Australian Tropical Transect

Energy and water availability were identified as the first order controls of evapotranspiration(ET) in ecohyrodrology. With a ~1,000 km precipitation gradient and distinct wet-dry climate,the North Australian Tropical Transect (NATT) was well suited for evaluating how energy andwater availabilities constrain water use by vegetation, but has not been done yet. In this study,we addressed this que...

متن کامل

Microbial diversity and community respiration in freshwater sediments influenced by artificial light at night.

An increasing proportion of the Earth's surface is illuminated at night. In aquatic ecosystems, artificial light at night (ALAN) may influence microbial communities living in the sediments. These communities are highly diverse and play an important role in the global carbon cycle. We combined field and laboratory experiments using sediments from an agricultural drainage system to examine how AL...

متن کامل

Editorial: The Role of Microbial Communities in Tropical Ecosystems

Microorganisms represent the largest proportion of the Earth's biodiversity and play an essential role in ecosystem processes, providing functions that ultimately sustain all of life (Falkowski et al., 2008; Prosser, 2012). Understanding the link between ecosystem functioning and the distribution of microbial diversity is essential to predict ecosystem responses to a changing environment (de Vr...

متن کامل

Carbon Exchange Among Tropical Coastal Ecosystems

Tropical rivers provide about 60% of the global transport of organic and inorganic carbon from continents to the coastal zone. These inputs combine with organic material from productive mangrove forests, seagrass beds, and coral reefs to make tropical coastal ecosystems important components in the global carbon cycle. Carbon exchange has been measured over multiple spatial scales, ranging from ...

متن کامل

The First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle

PB 103 The six chapters (Chapters 10-15) in Part III consider the current and future carbon balance of terrestrial and aquatic ecosystems in North America. Although the amount of carbon exchanged between these ecosystems and the atmosphere each year through photosynthesis and plant and microbial respiration is large, the net balance for all of the ecosystems combined is currently a net sink of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017